2022

Full Marks - 60
Time - 3 hours
The figures in the right-hand margin indicate marks

Answer all questions

Part-I

1. Answer the following :
a) The value of $(\mathrm{i})^{30}=$ \qquad .
b) The point at which a function is not analytic is called \qquad .
c) Write the complex form of Fourier integral representation.
d) The Fourier transform of $e^{-x^{2} / 2}$ simply repeats itself. (True/false)
e) If $f(k)$ is the Fourier transform of $f(t)$ then the Fourier transform of $f(t \pm a)$ is \qquad .
f) Write heat flow equation in ID.
g) $L\left\{t^{5}\right\}=$ \qquad .
h) Define Laplace transform.

Part-II

2. Answer any eight of the following
a) Find the complex conjugate of $\frac{1+2 i}{1-i}$
b) State Cauchy's Integral theorem.
c) Find $\oint \frac{e^{z}}{z^{2}+9} d z$ inside C if $|z|=2$ is C.
d) Find the Taylor's series expansion of $f(z)=\sin z$ about $\mathrm{z}=0$.
e) Find Fourier sine transform of a $a^{-a t}$.
f) State convolution theorem.
g) Prove change of scale property of Fouriertransform.
h) Find Laplace's transform of $\mathrm{e}^{3 t}+\mathrm{e}^{-3}$
i) Find the Laplace's transform of $f(t)=t$.
j) Write Linearity property of Inverse Laplace's transform.

Part-III

3. Answer any eight of the following : 2×8
a) Find the location of inverse of 4-3i in the argand diagram.
b) State necessary and sufficient condition for a function to be analytic.
c) Find the analytic function $f(z)=u+i v$, if $v(x, y)=y^{2}-x^{2}$.
d) Define zeroes and singular point of a complex function.
e) Find the Fourier cosine integral representation

$$
\text { of } f(x)=\left\{\begin{array}{cc}
\sin x, & 0 \leq x \leq \pi \\
0, & x>\pi
\end{array}\right.
$$

f) Prove shifting property of Fourier transform.
g) Write down the properties of Dirac delta function.
h) Find the value of $\int x e^{-3 x} \sin x d x$.
i) Find Laplace transform of first derivative of $f(t)$.
j) Find $f(t)$ whose Laplace transform is $F(s)=\frac{1}{s(s-a)}$.

Part-IV

4. a) Derive Cauchy-Reimann conditions in polar form.

OR
b) State and prove Cauchy's Residue theorem in multiply connected region.
5. a) Find the Fourier transform of Gaussian distribution function $f(x)=N e^{-\alpha x^{2}}$.
OR
b) Derive expression for Fourier sine and cosine transform of 1st derivatives.
6. a) State and prove convolution theorem for Fourier-transform.

OR

b) Find a solution of heat flow equation in ID using Fourier transform.
7. a) Find Laplace transform $f(t)=t^{n}, n=0,1,2 \ldots$

OR

b) Using Laplace's transform solve the differential equation $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x} \sin x$.

IV-UG-Phy(CC)-IX (NC)

2022

Full Marks - 60
Time - 3 hours
The figures in the right-hand margin indicate marks

Answer all questions

Part-I

1. Answer the following : 1×8
a) Photoelectric effect illustrates \qquad nature of light.
b) Bohr's atom model could not explain about \qquad of Hydrogen spectral line.
c) __ waves are not electro magnetic in nature.
d) Davison-Garmer experiment confirms \qquad nature of particles.
e) Write uncertainty principle in terms of time and energy.
f) Which nucleus is highlty stable?
g) The unit of Radioactivity is \qquad .
h) A positron has same mass as that of \qquad

Part-II

2. Answer any eight of the following :
a) Define work function.
b) Calculate the energy associated with a photon of wave length $6000 \AA$. $h=6.62 \times 10^{-34} \mathrm{JS}$
c) Write Bohr's postulate explaining frequency condition.
d) Calculate the De Broglie wavelength of electron moving with a speed of $10^{5} \mathrm{~m} / \mathrm{s}$, mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$.
e) Calculate the wavelength of photon whose energy is $6 \times 10^{-18} \mathrm{~J}$.
f) Write the failures of shell model.
g) Explain packing factor of nucleus.
h) Write down uses of Nuclear Reaction.
i) Define Nuclear fission.
j) Find the radius of ${ }_{8} \mathrm{O}^{16}$ nucleus.

Part-III

Answer any eight of the following: 2×8
a) What is Compton shift? Write its expression.
b) Derive Einstein's photo electron equation.
c) Explain wave particle duality.
d) State Heisenberg's uncertainty principle.
e) Write down the limitations of Bohr's atom model.
f) Write down the properties of Nuclear force.
g) Find the wavelength of second line of Balmer series of Hydrogen atom if wavelength of 1st line is 6683A.
h) Find the energy equivalent of mass of lamu.
i) Derive a relation between decay constant and half life period.
j) Show that density of nucleus is independent of mass number.

Part-IV

4. a) Explain the Compton effect. How this effect is different from photoelectric effect?

OR

b) Describe Frank-Hertz experiment.
5. a. Explain Davison German experiment.

OR

b) Discuss the validity of Huygen's berg uncertainty principle with the help gamma ray microscope and estimate the ground state energy of H -atom.
6. a) Write down few experimental facts in suport of magic numbers. Draw shell model for ${ }^{208} \mathrm{pb}_{82}$. 6

OR

b) Explain the terms of semi-empirical mass formula those are Quantum origin.
7. a) State and explain laws of Radioactivity decay. Define decay constant.

OR
b) Describe the construction and working of a Nuclear reactor.

2022

Full Marks - 60
Time - 3 hours
The figures in the right-hand margin indicate marks

Answer all questions

Part-I

1. Answer the following : 1×8
a) Which component increases the power of a signal.
b) The binary equivalent of $(0.75)_{10}$ is \qquad .
c) n-binary literals can be combined with an AND operation in \qquad possible ways.
d) Karnaugh Map is a \qquad method used to simplify Boolean expressions containing two or four variables.
e) The 1 's complement of 11011001 is \qquad .
f) Write the expression for differential d at the the output of a half substractor.
g) The heart of all digital circuits is \qquad .
h) 1 byte = ___ bits.

Part-II

2. Answer any eight of the following :
a) Write three applications of Ic's.
b) What is a water? Write it's uses.
c) Convert $(437)_{8}$ to decimal.
d) Simplify the expression using De-Morgan's theorem

$$
Y=\left[\left(A+B^{\prime}\right)-\left(B+C^{\prime}\right)\right]
$$

e) Find out the decimal equivalent of minterm ABC^{\prime}.
f) What is a transducer?
g) Add the binary numbers $(101.11)_{2}$ and $(110.01)_{2}$.
h) Substract 100 from 111 by is complement method.
i) Define decoder.
j) Name different units of a digital computer.

Part-III

Answer any eight of the following :
a) Draw circuit diagram for two input diode or gate.
b) Describe how NOT gate can be obtained from NAND gate.
c) State duality principle.
d) Simplify the expression $-Y=A B+B(A+B)+C(B+C)$.
e) Explain sum of product and product of sum.
f) Draw block diagram of CRO.
g) Distinguish between multiplexer and de-multiplexer.
h) Write the applications of encoder.
i) Substract (1011) from (1001) $)_{2}$ by 2's complement method.
j) Describe about control unit of a digital computer.

[4]

Part-IV

4. a) Define Integrated circuit. Write down the advantages and disadvantages of integrated circuit.

OR

b) What is NAND gate? Write the truth table and logic symbol. Explain how NAND gate can be realised using diodes and transisters.
5. a) State and prove De Morgan's theorem. 6 OR
b) Describe the construction of CRO with diagram. Find expression for electrostatic deflection.
6. a) Describe a full adder with logic circuit. 6 OR
b) What is IC-555 timer. Describe 8-pins IC-555 timer with block diagram.
7. a) Explain data storage giving brief description of RAM and ROM.

> OR
b) Describe ring counter with logic diagram using D-flip-flops.

2019

Full Marks - 40

Time - 2 hours
The figures in the right-hand margin indicate marks
Answer all questions

1. a) Discuss about non-conventional energy sources along with their advantages and disadvantages over conventional energy sources. 10
b) Discuss about the procedure on the generation
of biogas.
c) Briefly discuss about Fossil fuel as a source of energy.

OR

d) Discuss the characteristics of photovoltaic systems.
e) Discuss the construction and working principle
of solar cell.
f) Briefly discuss about the procedure to be followed for the storage of solar energy.
2. a) Discuss how wind energy can be utilized as one of the alternative source of energy.
b) Discuss the potential of ocean energy against wind and solar energy. $3+3$
c) Write notes on wave energy devices.
d) Write notes on wind turbines.

OR

e) Discuss about the hydropower resources and hence its impact on environment. $5+5$
f) Explain the technology involved in geothermal power plant.
g) Write notes on ocean bio-mass. 4

IV-UG-Phy(DSC $_{1.2 .3}$)-IV

2019

Full Marks - 60
Time - 3 hours

The figures in the right-hand margin indicate marks
Answer all questions

1. a) Define steady flow, incompressible flow and irrotational flow.
b) Explain why the viscosity of liquid decreases with temperature while viscosity of gases increases with temperature. 3
c) Define coefficient of viscosity. Explain with experimental details the determination of coefficient of viscosity of a liquid. $2+7$

OR

d) What are saw tooth wave and square wave? What are their applications ?
e) Define reverberation. How can the reverberation of a large auditorium be controlled ?
f) Define Q-factor of resonance. Explain with necessary mathematical theory how resonance is achieved in case of forced vibration. $2+7$
2. a) Define group velocity and phase velocity. 3
b) What are Lissajous figures and what are their uses ?
c) Discuss with necessary theory the superposition of two perpendicular simple harmonic motions of equal frequencies but different amplitudes in detail.

OR

d) A source of sound of frequency 500 Hz is producing longitudinal waves in air. The distance between two successive rarefactions in wave is 0.64 m and amplitude of vibration of particle is 0.002 m . Find the distance-displacement equation of the wave.
e) Differentiate between dispersive and nondispersive medium.
f) State the wave equation for one dimensional motion and obtain its solution. 9
3. a) What are conditions for sustained interference of light waves? 3
b) What is biprism ? How coherent sources are achieved in Fresnels biprism.
c) Describe the formation of interference fringes using two parallel slits in Young's experiments. Obtain an expression for fringe width. What is the effect of increasing the width of the slits.

OR

d) A wedge shaped film is illuminated by light of wavelength $4650 \AA$. The angle of wedge is 40 seconds. Calculate the fringe separation between two consecutive fringes.
e) Differentiate between fringes of equal width and fringes of equal inclination.3
f) What are Newton's rings ? With necessary diagram derive an expression for the radi of the rings.

9
4. a) Calculate the radius of first zone in a zone pla of focal length 16 cm for light of waveleng $6400 \AA$.
b) What are the differences between interferenc and diffraction?
c) Explain the concept of Fresnel's half perioc zones and show that the area of all the zones ar nearly the same.

OR

d) Distinguish between Fresnel and Fraunhofer class of diffraction.
e) Microwaves of wavelength 20 cm are incident normally on a 5.0 cm wide slit. Deduce the angular width of the central maximum. 3
f) Derive an expression for the intensity distribution due to Fraunhofer diffraction at a single slit and show that the intensity of the first subsidiary maximum is roughly 4.5% of that of the principal maximum.

